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Abstract. Many scientific computing applications and engineering simulations 
exhibit noncontiguous I/O access patterns. Data sieving is an important tech-
nique to improve the performance of noncontiguous I/O accesses by combining 
small and noncontiguous requests into a large and contiguous request. It has 
been proven effective even though more data is potentially accessed than de-
manded. In this study, we propose a new data sieving approach namely Perfor-
mance Model Directed Data Sieving, or PMD data sieving in short. It improves 
the existing data sieving approach from two aspects: 1) dynamically determines 
when it is beneficial to perform data sieving; and 2) dynamically determines 
how to perform data sieving if beneficial. It improves the performance of the 
existing data sieving approach and reduces the memory consumption as verified 
by experimental results. Given the importance of supporting noncontiguous ac-
cesses effectively and reducing the memory pressure in a large-scale system, the 
proposed PMD data sieving approach in this research holds a promise and will 
have an impact on high performance I/O systems. 
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1 Introduction 

Many scientific computing applications and engineering simulations are highly data 
intensive. These applications often access a large number of small and noncontiguous 
chunks of data [5][9]. Even though advanced parallel file systems (such as 
PVFS/PVFS2 [3], Lustre [4], GPFS [15]) have been developed in recent years, and 
they generally provide high bandwidth for large, well-formed data streams, they often 
perform inadequately in dealing with a large number of small and noncontiguous data 
requests. Data sieving is an important technique that combines small and noncontigu-
ous I/O requests into a large and contiguous request to reduce the effect of high I/O 
latency caused by a noncontiguous access pattern and many small requests [17][18]. 
The data sieving technique has been extensively evaluated and proven effective in 
optimizing small and noncontiguous I/O accesses [9][14][17][18]. The current data 
sieving technique, however, has two potential limitations. First, the benefit of data 



sieving depends on specific access patterns; nevertheless, the existing data sieving 
technique is rather static and lacks a dynamic decision based on different access pat-
terns. If data sieving is enabled in the parallel I/O system, the existing technique al-
ways combines requests to form a large and contiguous request, without considering 
specific access patterns. Even though data sieving is beneficial in many scenarios, the 
ignorance of access patterns can degrade the I/O performance some times. For in-
stance, in certain access patterns, the non-requested portion between two requested 
portions (also called holes) could be so large that it may not be beneficial to perform 
data sieving any more as the sieving may not offset the overhead.  

Second, the current data sieving technique has a potential problem of extensive 
memory requirement [17][18]. In the existing algorithm, instead of accessing each 
contiguous portion of the data separately, a single contiguous chunk of data starting 
from the first requested byte up to the last requested byte is read into a temporary 
buffer in memory (in an I/O read case) [17][18]. The total temporary buffer that data 
is read into must be as large as the total number of bytes between the first and the last 
byte requested by the user. As multicore/manycore architectures become universal, 
the available memory capacity per core is projected to decrease in high performance 
computing (HPC) systems. The memory requirement of the existing data sieving 
could be an increasingly important issue. 
The detection of beneficial cases and an intelligent, dynamic adoption of the data 
sieving technique based on the access pattern can both improve the parallel I/O per-
formance and reduce the memory consumption of the data sieving technique. In this 
study, we revisit the data sieving technique and propose a new data sieving approach, 
namely Performance Model Directed Data Sieving (or PMD data sieving in short). 
The newly proposed approach considers the I/O access pattern at run time. It im-
proves the performance of the existing data sieving technique and reduces the 
memory pressure as well. To the best of our knowledge, this work is the first attempt 
in developing a dynamic data sieving technique based on access patterns to improve 
the parallel I/O performance and reduce the memory consumption.  

2 Conventional Data Sieving and Implementation 

Data sieving was first used in the PASSION system to access sections of strided ar-
rays [18]. This technique has been extended in ROMIO to handle general noncontigu-
ous I/O accesses [14][17]. The main advantage of data sieving is that it requires very 
few I/O requests compared with the direct method in which the number of I/O re-
quests made is equal to the number of times data is requested. With the data sieving 
technique, the I/O performance increases because the number of I/O calls is reduced 
and if a large and contiguous request outweighs the penalty of reading and extracting 
extra data. The data sieving technique has been extensively evaluated and proven 
beneficial for many applications [17][18]. 

The implementation of the data sieving technique is straightforward in general. In the 
read case, the data sieving approach first reads the entire contiguous chunk starting 



from the lowest offset of all requests to the highest offset of all requests. This contig-
uous chunk includes non-requested data, also called holes. After the entire chunk is 
read into temporary memory, the data sieving approach sieves out non-requested data. 
Only the demanded data are kept and copied into user buffer. Given a large number of 
I/O requests, and the possible wide distribution of these requests, the temporary 
memory requirement of the conventional data sieving technique could be high. In the 
write case, it is slightly more complicated than in the read case because the data siev-
ing needs to perform a read-modify-write operation. In addition, as other processes 
can try to access the same region, an atomic read-modify-write is needed. The data 
sieving technique has been well implemented in ROMIO, the most popular implemen-
tation of the MPI-IO middleware [14][17].  

3 Performance Model Directed Data Sieving 

We propose a new performance model directed data sieving strategy to improve the 
I/O performance and to reduce the memory consumption of the existing approach. 
The essential idea of this strategy is that we model the performance of I/O requests, 
and based on the performance model, the new strategy dynamically determines the 
way to perform data sieving based on access patterns and the performance estimated 
from the model. It is essentially a heuristic data sieving approach that adapts to differ-
ent I/O access patterns and makes the decision dynamically. 

3.1 Performance Model 

The purpose of a per-
formance model is to 
estimate the perfor-
mance of I/O requests 
and thus direct data 
sieving dynamically. 
The performance 
model does not need 
to be exactly accurate 
but provides useful 
heuristic direction. In our model, the time consumption for each data access primarily 
contains two parts, the time spent on accessing storage and the time spent on the net-
work establishment and transmission. Table 1 lists the parameters considered in the 
performance model and the descriptions of them. The performance model is simple 
but effective. It has been verified that it has clear benefits of improving the perfor-
mance and reducing the memory requirement for data sieving via experimental tests. 

The basic idea of constructing network time is as follows. For each data access, the 
time spent on network, Tnetwork, consists of the time spent on establishing the connec-
tion and the time spent on transferring the data. The storage access time, Tstorage, con-
sists of the start up time for one storage node I/O operation (s) and the time spent on 

Table 1. Parameters and Descriptions 
Parameters Description 

p Number of I/O client processes in a client node 
n Number of storage nodes (file servers) 
te Time of establishing network connection for single node 
tt Network transmission time of one unit of data 

cud Time reading/writing one unit of data 
lqdep The latency for outstanding I/Os 
sizerd Read data size of one I/O request 
sizewr Write data size of one I/O request 

 



the actual data read/write (Trw). The latency for outstanding I/Os (lqdep) also affects the 
overall time of data access and hence we consider it in the performance model as well. 
As storage node performance varies for read and write requests, we consider these 
two operations separately in the model. Thus, the total time can be written as a func-
tion of the above workload characteristics as: 

Ttotal = function (Tnetwork , Tstorage , lqdep) 
In practice, we can find the relations between above workload characteristics and can 
derive formulas that guide the performance estimation of I/O requests in a data siev-
ing approach as shown in Table 2. 

Table 2. Formula of Deriving I/O Performance 

Total time required for establishing network connection te * p 

The total time spent on the network transmission rdtt size
n

∗ Or wrtt size
n

∗  

The total start up (s) time for I/O operations *( )p seek time system IOcall +    

Total time spent on the actual data read/write (Trw) 
rdsize cud
n
∗ Or wrsize cud

n
∗  

Hence, the total required time to access a requested data from the storage node can 
be calculated from the above discussed parameters and formula as: 

( )rd rd
total dep

tt size size cudT te p p seek time system IO call lq
n n

∗ ∗= ∗ + + ∗  +   + +  

The performance model contains those most critical parameters that determine the 
performance of an I/O system. With such a performance model, we are able to ana-
lyze the performance of a data sieving approach and perform data sieving dynamically 
based on different access patterns. In the proposed PMD data sieving approach, we 
explore two levels of improvements over the existing data sieving approach: 1) with 
the performance model, the PMD data sieving approach can dynamically determine 
when would be good to perform data sieving depending on specific access patterns; 
and 2) if it is determined to perform data sieving, the PMD data sieving approach will 
also determine how to perform data sieving to achieve the maximum benefits. We 
introduce two algorithms to achieve these goals, as discussed below.  

3.2 When to Perform Data Sieving 

The first algorithm we present for dynamically determining whether to perform data 
sieving or not depending on specific access patterns. This algorithm takes requests 
(with possible holes), and the rest of the parameters in the performance model as in-
put, and outputs whether it is beneficial to perform data sieving for such requests.  

The algorithm makes the decision of when to perform data sieving dynamically based 
on the performance model, access patterns, network, and the storage system perfor-
mance. It compares the overhead of accessing holes (time of accessing a hole) and the 
time savings with the data sieving (reduced storage and network startup time and 



latency due to combined requests), and if the savings outperforms the overhead, then 
a data sieving approach is determined to be performed.  

The first algorithm is a building block for the second algorithm. The second algorithm 
scans all requests from the lowest offset to the highest offset, and dynamically deter-
mines whether to perform data sieving for any two consecutive requests as discussed 
in the next subsection.  

3.3 How to Perform Data Sieving 

If it is determined that the data sieving technique is beneficial then the challenge is 
how to do it. The second algorithm solves this issue. The aim of this algorithm is to 
find different groups in which data sieving technique can be beneficial.  

This algorithm starts grouping these I/O requests from the lowest offset to the larg-
est one. This algorithm scans all requests and applies the first algorithm to determine 
whether each request should be handled with data sieving or not. For instance, this 
algorithm comes across the first request, and then it follows the first algorithm. Let us 
assume that it does not follow data sieving technique. Hence, it will treat the first I/O 
request independently and will not group with any other requests. After that it will 
need to make the decision between second and third request and assume, again it can-
not group them together. In this case also, the second I/O request will be treated inde-
pendently and won’t be grouped with any other. Now, it comes across the third re-
quest. Assume this time the algorithm determines to adopt data sieving. Then, it will 
be grouped with the consecutive data request. The algorithm will keep grouping con-
secutive noncontiguous requests unless the decision from the first algorithm comes 
out to be NO. This process will be continued and the second algorithm will terminate 
at the end of the last I/O request. 

4 Experimental Results and Analysis 

In this section, we present the experimental results of the proposed PMD data sieving. 
We also compare it with the existing data sieving approach and the direct method 
where no data sieving is applied. 

4.1 Experimental Environment 

The experiments were conducted on a 65-node Sun Fire Linux-based cluster test bed, 
with Ubuntu 4.3.3-5 operating system with kernel 2.6.28.10, PVFS 2.8.1 file system 
and MPICH2-1.0.5p3 library and runtime environment. The tests were conducted 
with three I/O benchmark scenarios, one with all requests and holes among them have 
different sizes, one with sparse noncontiguous I/O requests and large holes exist 
among requests, and one with dense noncontiguous I/O requests where small size 
holes exist among requests. We performed the tests with three I/O access scenarios 
and combinations of them to measure the performance. The actual values of the pa-



rameters used in the performance model were obtained through measurement on the 
experimental platform. The values are, te: 0.0003sec, tt: 1/120 MB, s: 0.0003sec and 
cud: 1/120 MB. The run time measured for each scenario was obtained from the aver-
age of 100 runs.  

Fig. 1. Execution time for  
access scenario 1 (fixed 

storage nodes) 

Fig. 2. Execution time for 
access scenario 2 (fixed 

storage nodes) 

Fig. 3. Execution time for 
access scenario 3 (fixed 

storage nodes) 

4.2 Experimental Results 

The above and following figures report the time comparison between the three meth-
ods, the direct method, the existing data sieving approach and the proposed PMD data 
sieving approach. The Y-axis represents the run time in seconds. The X axis repre-
sents different number of I/O client processes, ranging from 1, 2, 4, 8 and 16. We 
fixed the number of storage nodes as 16 in these tests. Figure 1 plots the run time 
results of all three strategies for the first access scenario. In all cases, the PMD data 
sieving approach performed better than the current data sieving approach and the 
direct method. 

Figure 2 and Figure 3 are similar to Figure 1, and plot the run time results for the 
access scenarios 2 and 3, respectively. The PMD approach performed almost equally 
well with the direct method, whereas the existing data sieving technique had worse 
performance in this case as shown in Figure 2. Figure 3 demonstrates that, as the 
number of I/O client processes increased, the run time of the direct method increased 
drastically. In the case of one process, the direct method performed better than both 
data sieving approaches; whereas the direct method performed worse than the other 
two in the case of 16 processes. 

Fig. 4. Execution time for 
access scenario 1 (fixed client 

processes) 

Fig. 5. Execution time for 
access scenario 2 (fixed 

client processes) 

Fig. 6. Execution time for 
access scenario 3 (fixed 

client processes) 



We have also fixed the number of processes at 16 and varied the number of storage 
nodes to observe the performance variations. In this set of tests, the storage nodes 
were varied from 1, 2, 4, 8 and 16. Figures 4, 5, and 6 report the results of these tests 
for access scenarios 1, 2 and 3 respectively. In these figures, the X axis represents the 
number of storage nodes while Y axis represents the run time in seconds. As the num-
ber of storage nodes increased, the distribution of requested data also increased. The 
transmission time and the time spent on the actual data read/write were decreased. All 
the three graphs confirmed the decreasing trend. In these tests, the existing data siev-
ing performed better than the direct method for access scenario 3, while the PMD data 
sieving achieved the best performance in most cases because of its capability of mak-
ing data sieving decisions dynamically based on different access patterns. 

5 Related Work 

There has been significant amount of research effort in optimizing parallel I/O per-
formance, such as collective I/O [17], two-phase I/O [2], extended two-phase I/O 
[18], data sieving [17], and ADIOS library [8], resonant I/O, I/O forwarding [6]. The-
se strategies demonstrate that data sieving is one of the most successful and widely 
used approaches to collect and merge requests into a large and contiguous one to carry 
out more efficiently. This study further improves the data sieving approach and pro-
poses an intelligent performance model directed data sieving that dynamically makes 
the decision for when and how to conduct data sieving. It advances the state of the art 
in these areas. 

Many research efforts have also been devoted to caching and prefetching optimiza-
tions for high performance I/O systems [11][12][10][19][1][7][16][13], While 
prefetching optimizations can hide I/O access latency and caching optimizations can 
reduce the I/O requests to underlying storage devices, they cannot completely elimi-
nate small and noncontiguous I/O requests. The data sieving and the proposed per-
formance model directed data sieving approach are complementary to them and are 
critical for providing a high performance I/O system. 

Parallel file systems [4][15][20][3][16], enable concurrent I/O accesses from mul-
tiple clients to files. While parallel file systems perform well for large and well-
formed data streams, they often perform inadequately in dealing with many small and 
noncontiguous data requests. The data sieving and the enhanced performance model 
directed data sieving approach proposed in this study address these issues well. This 
research will have an impact for high performance parallel I/O system. 

6 Conclusion 

Poor I/O performance is a critical hurdle in HPC systems, especially for data-
intensive applications. These applications often exhibit small and noncontiguous ac-
cesses, and it is important to deliver high performance for these accesses. Data sieving 
remains a critical approach to improve the performance of small and noncontiguous 



accesses [17][18]. The existing data sieving strategy, however, suffers large memory 
requirement pressure and is static. This study proposes a new performance model 
directed (PMD) data sieving approach and addresses the drawbacks. The proposed 
approach is essentially a heuristic data sieving approach directed by the performance 
estimation given from a performance model. The PMD data sieving approach dynam-
ically makes the decision on when and how to perform data sieving based on different 
access patterns. The experimental results have confirmed its benefits and advantages 
over the widely used conventional method. It improves the I/O performance and re-
duces the memory requirement. Given the importance of a data sieving approach to 
improve the performance of small and noncontiguous I/O, the PMD data sieving ap-
proach will have an impact on high performance I/O systems. 
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